- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Mazières, David (1)
-
Sotoudeh, Matthew (1)
-
Welzl, Michael (1)
-
Winstein, Keith (1)
-
Yuan, Gina (1)
-
Zhang, David K (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Vanbever, Laurent (1)
-
Zhang, Irene (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vanbever, Laurent; Zhang, Irene (Ed.)In response to concerns about protocol ossification and privacy, post-TCP transport protocols such as QUIC and WebRTC include end-to-end encryption and authentication at the transport layer. This makes their packets opaque to middleboxes, freeing the transport protocol to evolve but preventing some in-network innovations and performance improvements. This paper describes sidekick protocols: an approach to in-network assistance for opaque transport protocols where in-network intermediaries help endpoints by sending information adjacent to the underlying connection, which remains opaque and unmodified on the wire. A key technical challenge is how the sidekick connection can efficiently refer to ranges of packets of the underlying connection without the ability to observe cleartext sequence numbers. We present a mathematical tool called a quACK that concisely represents a selective acknowledgment of opaque packets, without access to cleartext sequence numbers. In real-world and emulation-based evaluations, the sidekick improved performance in several scenarios: early retransmission over lossy Wi-Fi paths, proxy acknowledgments to save energy, and a path-aware congestion-control mechanism we call PACUBIC that emulates a “split” connection.more » « less
An official website of the United States government

Full Text Available